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ABSTRACT 
 
The research in this paper focuses on the I/O 
problem associated with a parallel application 
writing to a single physical disk. Included in our 
research are the original ideas that led to the first 
version of the parallel software, subsequent 
versions of the software derived from lessons 
learned from benchmark results, and speedup 
results of each version. The underlying purpose of 
this software is to process hydrographic data 
having a complicated, multi-tiered format. The data 
processing involves reading tens to hundreds of 
files containing raw data, filtering out extraneous 
data values, and writing the filtered data to a single 
file used in additional processing. The problem is 
not computationally intensive, but bound by the 
system’s file writing capability. Results show that 
the more responsible the software was for 
organizing the data before writing, the better the 
speedup. The critical factor for writing data 
efficiently involved the limitation of writing data 
over a single I/O controller. Our parallel software 
has fantastic utility where system specifications do 
not allow for the use of parallel file systems, or 
writing data over multiple I/O controllers. 
 
Keywords: Parallel, Pfm_loader, Speedup, Disk 
I/O, Hydrographic data. 
 

1.    INTRODUCTION 
 

The Naval Research Laboratory’s (NRL) Code 
7440 Production Enhancement Team at the Stennis 

Space Center has been tasked to develop ways to 
speedup hydrographic data processing at the Naval 
Oceanographic Office (NAVOCEANO) [1]. This 
paper presents the final development of a 
parallelized version of the Pfm_loader application 
customized to run on a Beowulf cluster. 
 
This paper specifically covers software 
development efforts in early FY02 [2]. In a series 
of algorithms, called Schemes D, E, and F, a 
parallel algorithm previously implemented in 
Scheme C (see Fig. 1) has been integrated with an 
improved version of NAVOCEANO’s Pure File 
Magic (PFM) library. Former versions of this 
software not mentioned, namely Schemes A and B, 
were used as a design platform for the software 
architecture found in Scheme C. The main goal of 
this work was to increase the writing rate of binned 
data to a physical disk. The final software version 
is Scheme F. 
 
The final parallel code of Scheme F achieves the 
best speedup for the largest available test dataset. 
The simple runs (no filtering) exhibited a speedup 
of 10 as compared to the original, serial algorithm. 
Runs with swath filtering showed a top speedup of 
8. Runs with area filtering reached a speedup of 
6.5. Runs with both swath and area filtering 
showed a top speedup of 7.  In all cases, data 
strongly suggest that greater speedups could be 
achieved for larger than tested input datasets. 
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Section 2 of this paper is devoted to Scheme D.  
Section 3 presents results on an implemented 
threaded version of Scheme D. Section 4 deals with 
results for Scheme E. Section 5 describes Scheme 
F. Detailed results are presented on the 
performance of Scheme F when swath and area 
based filtering are enabled. Section 6 presents 
results illustrating the effect of the physical disk’s 
I/O throughput rates on speedup results. Section 7 
discusses results and future plans. 

2.   SCHEME D 
 
In Scheme D, as in Scheme C, nodes are assigned 
one of the following roles — a master node, an I/O 
node, or a slave node. In general, more of the 
functionality of the original PFM library has been 
assigned to the slave nodes in Scheme D than in 
earlier schemes. 

• Each slave node sort’s read-in sounding data 
according to bin index and compresses them 
in the same way as is done in the original 
PFM library. The sending buffer is now in 
the form of a character string. 

• The I/O node receives sounding data in the 
PFM compressed form and copies them into 
the PFM-style depth blocks consisting of six 
sounding data and a continuation pointer. 

• The master node role has not been changed 
from Scheme C. 

 
Results 
Fig. 2 illustrates achieved speedups for different 

loads. The test datasets are denoted by the number 
of files tested (7, 12, 24, 48 and 74 files). Timings 
have been averaged over four runs. Speedup 
figures are created by comparing parallel and serial 
runs. In the case of algorithm speedups, the 
comparisons are made with corresponding timings 
for three Message Passing Interface (MPI) 
processes. Speedups exhibited by Scheme D reach 
about 7 for the four larger dataset loads. For the 
smallest dataset, Scheme D shows a speedup of 
around 5, reducing the run time from around 2 min 
to 23 sec. For the largest input dataset tested, the 
measured speedup is 7 fold, reducing execution 
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Fig. 1.   Scheme C (the precursor to the schemes presented in this paper) 
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time from around 24 min to 3 min 20 sec. The 
optimal number of MPI processes is 9 for this 
scheme. 
 

 
3.   THREADING 

 
Initial Plan 
The overall processing flow can be improved by 
grouping tasks into at least two threads on the I/O 
node and a slave node. Tasks related to MPI 
communication can be accomplished by a separate 
thread. A testing program mixing MPI and 
threading confirmed that MPI Chamleon (MPICH) 
allows only a single thread to execute MPI calls. 
On the I/O node, a separate communication thread 
would take care of receiving buffers. The other 
thread would be responsible for writing data to the 
PFM output file.  On the slave node, a 
communication thread would send full buffers to 
the I/O node. The second thread would transfer and 
process sounding data from input files to buffers. 
Tests are planned to check if the currently used 
dual-CPU system boards will efficiently support 
two application threads.  A quad system board for 
the I/O node could be used if that proved 
beneficial. 
Threading the I/O Node: Algorithm 
Only one part of the above plan has been 
implemented: Scheme D has been tested using 
Linux Posix threads on the I/O node only. 
Processing on the I/O node has been separated into 
two threads. The second thread submits data to an 

output PFM file. The main thread does all 
necessary initialization and then creates one 
additional thread, called the I/O processing thread. 
The main thread acts as the I/O communication 
thread. All MPI function calls are done only by the 
I/O communication thread. The I/O communication 
thread receives buffers from worker nodes and 
submits them to a work queue. The I/O processing 
thread checks the work queue for any full buffers, 
and uses PFM function calls to write data to the 
PFM output file. An empty buffer is returned to the 
work queue area. The algorithm implements reuse 
of buffers in order to avoid reinitializing buffers. 
All access to the work queue is safeguarded by “a 
mutex lock” (Mutually Exclusive Access Lock) 
mechanism, a standard tool available in the thread 
library. A set of a few empty buffers is initialized 
in advance on the I/O communication side. If all 
empty buffers on the I/O communication node are 
used, that thread enters the work queue and gets 
their empty buffers. If no empty buffers are 
available in the work queue area, the I/O 
communication thread initializes a fresh buffer. 
Only if initializing the fresh buffer fails, the I/O 
communication thread waits for the I/O processing 
thread to return a buffer. The creation of additional 
buffers is always expected because PFM library 
operations are the slowest part of processing (since 
these library operations require multiple accesses to 
the physical disk drive). 
 
Threading the I/O Node: Results 
Fig. 3 illustrates achieved speedups for different 
loads. Speedup values for the Scheme D-Threaded 
version are noticeably smaller than the original 
Scheme D. Such results could be attributed to the 
additional overhead of the thread library. However, 
results for the largest test dataset (74 files) are 
especially disappointing, due to the lack of control 
of the memory usage on the I/O node in the 
threaded code.  This preliminary threaded version 
has no control on the number of buffers used to 
keep incoming buffers on the I/O node. Since 
worker nodes deliver buffers much faster than the 
I/O node could possibly write them to a (slow) 
physical disk, incoming buffers forced the 
operating system on the I/O node to use disk swap 
space, causing a significant slow down in 
processing.  
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Fig. 2.   Achieved speedup of Scheme D for 
different loads. 
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4.    SCHEME E 

 
Grouping Sounding Data into Packages of 6 
The improved version of the PFM library, as well 
as the original library, writes data to the physical 
disk in fixed length blocks. Each block can hold up 
to six sounding values (the value of six is 
configurable). To take advantage of these blocks, 
sounding data are sent in groups of six (with the 
same bin index). At first, slave nodes send depths 
grouped into packets of six (with same bin indexes) 
to create full depth records in PFM style. When all 
input file names have been distributed (and most of 
the files have been already processed) the finishing 
slave nodes have some leftover depth data. 
Separately, each node cannot create a final full 
depth record containing 6 sounding values for one 
bin index. Under the direction of the master node, 
the first slave node to finish processing becomes a 
sorting and grouping node. Then, the other slave 
nodes send their leftover data to that sorting node 
for consolidation. Subsequently, full records are 
sent to the sorting and grouping node (the one 
which currently is accepting data) with the final 
leftover data sent to the I/O node. This additional 
effort of sorting into groups of six depths has the 
advantage of increasing speed of writing the data to 
disk as well as avoiding any need to reread and 
rewrite partially empty depth records. Further 
improvements include a new interface function to 
the PFM library to accommodate direct writing of 
blocks to the PFM file. Also, slave nodes are given 
the additional task of creation of complete depth 
blocks. This improvement reduces the I/O node’s 
task to simply updating the continuation pointers 
before writing data to disk. 

 
Results 
Fig. 4 illustrates achieved speedups for different 
loads, compared with the original serial 
application. Timings have been averaged over four 
runs. A comparison between speedup numbers for 
Schemes D and E shows that values for Scheme E 
are noticeably smaller, except for the largest test 
dataset. For the smallest dataset, Scheme E shows a 
speedup around 4.5, reducing the run time from 
around 2 min to 26 sec. For the largest input 
dataset tested, the measured speedup is around 7, 
reducing execution time from around 24 min to 3 
min 19 sec. The optimal number of MPI processes 
is 10 for larger datasets in Scheme E. 
 
Filtering, Recomputing and Final Tune-up 
The original filtering functionality works well in 
the Beowulf cluster environment. The original 
swath filtering was being handled separately for 
each input file. Thus the new distributed scheme of 
processing input files by a group of slave nodes has 
no effect on swath filtering. The same has been 
found for the recomputing step and area based 
filtering, which run without any changes to the 
code because they are executed in the serial phase, 
on the I/O node, only after the PFM file has already 
been created.  

 
5.   SCHEME F 

 
A tuned version of the new PFM library was used 
in Scheme F. Scheme F was tested with four 
different setups, involving two possible filtering 
procedures: swath filtering, area filtering, both 

Fig. 3. Achieved speedups of Scheme D-Threaded 
for different loads 
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Fig. 4.   Achieved speedup of Scheme E for 
different loads 
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Fig. 7.    Scheme F using both filters 
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swath and area filtering, and no filtering (called 
“simple runs”). Each of these four setups has been 
tested with the standard data test loads. Results 
with no filtering are illustrated in Fig. 5. 

  
Scheme F achieved the best speedup for the largest 
available test dataset. The simple runs (no filtering) 
exhibited a speedup of 10. Runs with swath 
filtering enabled showed a top speedup of 8. Runs 
with area filtering reached a speedup of 6.5. Runs 
with both swath and area filtering enabled showed 
a top speedup of 7. In the simple runs, swath 
filtering and area-based filtering are turned off.  
Fig. 6 illustrates achieved speedups for different 
loads and filter processing. For the smallest dataset, 
when swath filtering is turned on, worker nodes 
filter the sounding data by swath before assembling 
them and sending to the I/O node. Since swath 
filtering puts additional processing onto worker 

nodes, such code behavior is to be expected. 
Worker nodes perform swath filtering on sounding 
data read from the input files. When area filtering 
is also turned on, the I/O node also performs area 
filtering of sounding data. Since area filtering is 
done exclusively by the I/O node after all sounding 
data has been written to the PFM file, the area 
filtering is performed in the serial phase of overall 
processing.  
 

6. THE ROLE OF HARD DRIVE 
PERFORMANCE 

 
This section presents arguments to support the 
claim that the application Pfm_loader is I/O bound. 
When Scheme D was developed, upgrading the 
BIOS on each Beowulf cluster node resulted in 
significant improvement in the throughput of 
cluster IDE (ATA 100) disks.  These changes 
significantly affected the run time of parallel codes 
as well as the original serial code. The changes for 
the original serial code range from 5% to 11% (see 
table 1). The resulting speedup is presented in fig. 
7. In the case of algorithm speedups, the 
comparisons are done with corresponding timings 
for three MPI processes. The changes range from 
29% to 57%, which at least triples that of 
corresponding percentage changes for serial runs. 

 

7.   SUMMARY 
 
 The optimal number of MPI processes for the 
simple runs with large datasets is 9.6. When area 
filtering is turned on, the I/O node filters sounding 

Fig. 5.   Achieved speedups of Scheme F with no 
Filtering 
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Fig. 6.      Scheme F with Area Filtering 
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data by geographic area. Since area filtering is 
done exclusively by the I/O node after all sounding 
data has been already written to the PFM file, this 
processing adds to the length of the serial phase in 
the overall processing. The serial processing nature 
of area filtering causes the greatest reduction in 
performance. The results generated by testing two 
of the four types of processing provide arguments 
for increasing the size of the Beowulf cluster. 
These two processing types are (a) processing with 
swath filtering enabled, and (b) processing with 
both swath and area filtering enabled. For the 
largest test dataset, both processing methods 
achieved their best speedups when running with the 
maximal possible number of MPI processes. 
However, the same data indicates the speedup 
increase would be modest. 
 
In all cases, the data strongly suggests that a 
speedup greater than 10 could be achieved for 
larger datasets. This property is a positive 
characteristic of the current parallel code. It also 
strongly suggests that the five test datasets have not 
yet pushed the current code and cluster 
configuration to its limits.  

Number of Generic Sensor Format (GSF) 
input files 

7 12 24 48 74 
Timings of serial code, before BIOS upgrade 
125.1 203.5 439.3 946.0 1607.1 
Timings of serial code, with BIOS upgrade 
118.4 192.2 412.3 893.7 1433.2 

Percentage change 
5.33% 5.58% 6.13% 5.53% 10.82%
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