
Parallel Programming Enhancements
for Processing Hydrographic Data

Dr. MJ Miller1
Geary Layne1
Jim Braud2

Dr. Krzysztof Sarnowski3

1 Naval Research Laboratory Code 7440 (Mapping, Charting, and Geodesy)
2 Naval Oceanographic Office Code N41 (Validation Branch)

3 USM Hydrographic Science Research Center

Stennis Space Center, MS 39529

ABSTRACT

The research in this paper focuses on the I/O
problem associated with a parallel application
writing to a single physical disk. Included in our
research are the original ideas that led to the first
version of the parallel software, subsequent
versions of the software derived from lessons
learned from benchmark results, and speedup
results of each version. The underlying purpose of
this software is to process hydrographic data
having a complicated, multi-tiered format. The data
processing involves reading tens to hundreds of
files containing raw data, filtering out extraneous
data values, and writing the filtered data to a single
file used in additional processing. The problem is
not computationally intensive, but bound by the
system’s file writing capability. Results show that
the more responsible the software was for
organizing the data before writing, the better the
speedup. The critical factor for writing data
efficiently involved the limitation of writing data
over a single I/O controller. Our parallel software
has fantastic utility where system specifications do
not allow for the use of parallel file systems, or
writing data over multiple I/O controllers.

Keywords: Parallel, Pfm_loader, Speedup, Disk
I/O, Hydrographic data.

1. INTRODUCTION

The Naval Research Laboratory’s (NRL) Code
7440 Production Enhancement Team at the Stennis

Space Center has been tasked to develop ways to
speedup hydrographic data processing at the Naval
Oceanographic Office (NAVOCEANO) [1]. This
paper presents the final development of a
parallelized version of the Pfm_loader application
customized to run on a Beowulf cluster.

This paper specifically covers software
development efforts in early FY02 [2]. In a series
of algorithms, called Schemes D, E, and F, a
parallel algorithm previously implemented in
Scheme C (see Fig. 1) has been integrated with an
improved version of NAVOCEANO’s Pure File
Magic (PFM) library. Former versions of this
software not mentioned, namely Schemes A and B,
were used as a design platform for the software
architecture found in Scheme C. The main goal of
this work was to increase the writing rate of binned
data to a physical disk. The final software version
is Scheme F.

The final parallel code of Scheme F achieves the
best speedup for the largest available test dataset.
The simple runs (no filtering) exhibited a speedup
of 10 as compared to the original, serial algorithm.
Runs with swath filtering showed a top speedup of
8. Runs with area filtering reached a speedup of
6.5. Runs with both swath and area filtering
showed a top speedup of 7. In all cases, data
strongly suggest that greater speedups could be
achieved for larger than tested input datasets.

Miller, et al. (2003). Proceedings, 7th Systemics, Cybernetics and Informatics Conference, Orlando, FL. July 27-30, 2003.

 2

Section 2 of this paper is devoted to Scheme D.
Section 3 presents results on an implemented
threaded version of Scheme D. Section 4 deals with
results for Scheme E. Section 5 describes Scheme
F. Detailed results are presented on the
performance of Scheme F when swath and area
based filtering are enabled. Section 6 presents
results illustrating the effect of the physical disk’s
I/O throughput rates on speedup results. Section 7
discusses results and future plans.

2. SCHEME D

In Scheme D, as in Scheme C, nodes are assigned
one of the following roles — a master node, an I/O
node, or a slave node. In general, more of the
functionality of the original PFM library has been
assigned to the slave nodes in Scheme D than in
earlier schemes.

• Each slave node sort’s read-in sounding data
according to bin index and compresses them
in the same way as is done in the original
PFM library. The sending buffer is now in
the form of a character string.

• The I/O node receives sounding data in the
PFM compressed form and copies them into
the PFM-style depth blocks consisting of six
sounding data and a continuation pointer.

• The master node role has not been changed
from Scheme C.

Results
Fig. 2 illustrates achieved speedups for different

loads. The test datasets are denoted by the number
of files tested (7, 12, 24, 48 and 74 files). Timings
have been averaged over four runs. Speedup
figures are created by comparing parallel and serial
runs. In the case of algorithm speedups, the
comparisons are made with corresponding timings
for three Message Passing Interface (MPI)
processes. Speedups exhibited by Scheme D reach
about 7 for the four larger dataset loads. For the
smallest dataset, Scheme D shows a speedup of
around 5, reducing the run time from around 2 min
to 23 sec. For the largest input dataset tested, the
measured speedup is 7 fold, reducing execution

master I/O node

Slave1

R
A
M

Slave3

R
A
M

Slave2

R
A
M

Slave4

R
A
M

Slave5

R
A
M

File_name0
File_name1
File_name2
:
File_nameN

.
Output
PFM
File

Fig. 1. Scheme C (the precursor to the schemes presented in this paper)

Miller, et al. (2003). Proceedings, 7th Systemics, Cybernetics and Informatics Conference, Orlando, FL. July 27-30, 2003.

 3

time from around 24 min to 3 min 20 sec. The
optimal number of MPI processes is 9 for this
scheme.

3. THREADING

Initial Plan
The overall processing flow can be improved by
grouping tasks into at least two threads on the I/O
node and a slave node. Tasks related to MPI
communication can be accomplished by a separate
thread. A testing program mixing MPI and
threading confirmed that MPI Chamleon (MPICH)
allows only a single thread to execute MPI calls.
On the I/O node, a separate communication thread
would take care of receiving buffers. The other
thread would be responsible for writing data to the
PFM output file. On the slave node, a
communication thread would send full buffers to
the I/O node. The second thread would transfer and
process sounding data from input files to buffers.
Tests are planned to check if the currently used
dual-CPU system boards will efficiently support
two application threads. A quad system board for
the I/O node could be used if that proved
beneficial.
Threading the I/O Node: Algorithm
Only one part of the above plan has been
implemented: Scheme D has been tested using
Linux Posix threads on the I/O node only.
Processing on the I/O node has been separated into
two threads. The second thread submits data to an

output PFM file. The main thread does all
necessary initialization and then creates one
additional thread, called the I/O processing thread.
The main thread acts as the I/O communication
thread. All MPI function calls are done only by the
I/O communication thread. The I/O communication
thread receives buffers from worker nodes and
submits them to a work queue. The I/O processing
thread checks the work queue for any full buffers,
and uses PFM function calls to write data to the
PFM output file. An empty buffer is returned to the
work queue area. The algorithm implements reuse
of buffers in order to avoid reinitializing buffers.
All access to the work queue is safeguarded by “a
mutex lock” (Mutually Exclusive Access Lock)
mechanism, a standard tool available in the thread
library. A set of a few empty buffers is initialized
in advance on the I/O communication side. If all
empty buffers on the I/O communication node are
used, that thread enters the work queue and gets
their empty buffers. If no empty buffers are
available in the work queue area, the I/O
communication thread initializes a fresh buffer.
Only if initializing the fresh buffer fails, the I/O
communication thread waits for the I/O processing
thread to return a buffer. The creation of additional
buffers is always expected because PFM library
operations are the slowest part of processing (since
these library operations require multiple accesses to
the physical disk drive).

Threading the I/O Node: Results
Fig. 3 illustrates achieved speedups for different
loads. Speedup values for the Scheme D-Threaded
version are noticeably smaller than the original
Scheme D. Such results could be attributed to the
additional overhead of the thread library. However,
results for the largest test dataset (74 files) are
especially disappointing, due to the lack of control
of the memory usage on the I/O node in the
threaded code. This preliminary threaded version
has no control on the number of buffers used to
keep incoming buffers on the I/O node. Since
worker nodes deliver buffers much faster than the
I/O node could possibly write them to a (slow)
physical disk, incoming buffers forced the
operating system on the I/O node to use disk swap
space, causing a significant slow down in
processing.

Scheme D Speedup

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI Processes

Sp
ee

du
p

7 files
12
24
48
74

Fig. 2. Achieved speedup of Scheme D for
different loads.

Miller, et al. (2003). Proceedings, 7th Systemics, Cybernetics and Informatics Conference, Orlando, FL. July 27-30, 2003.

 4

4. SCHEME E

Grouping Sounding Data into Packages of 6
The improved version of the PFM library, as well
as the original library, writes data to the physical
disk in fixed length blocks. Each block can hold up
to six sounding values (the value of six is
configurable). To take advantage of these blocks,
sounding data are sent in groups of six (with the
same bin index). At first, slave nodes send depths
grouped into packets of six (with same bin indexes)
to create full depth records in PFM style. When all
input file names have been distributed (and most of
the files have been already processed) the finishing
slave nodes have some leftover depth data.
Separately, each node cannot create a final full
depth record containing 6 sounding values for one
bin index. Under the direction of the master node,
the first slave node to finish processing becomes a
sorting and grouping node. Then, the other slave
nodes send their leftover data to that sorting node
for consolidation. Subsequently, full records are
sent to the sorting and grouping node (the one
which currently is accepting data) with the final
leftover data sent to the I/O node. This additional
effort of sorting into groups of six depths has the
advantage of increasing speed of writing the data to
disk as well as avoiding any need to reread and
rewrite partially empty depth records. Further
improvements include a new interface function to
the PFM library to accommodate direct writing of
blocks to the PFM file. Also, slave nodes are given
the additional task of creation of complete depth
blocks. This improvement reduces the I/O node’s
task to simply updating the continuation pointers
before writing data to disk.

Results
Fig. 4 illustrates achieved speedups for different
loads, compared with the original serial
application. Timings have been averaged over four
runs. A comparison between speedup numbers for
Schemes D and E shows that values for Scheme E
are noticeably smaller, except for the largest test
dataset. For the smallest dataset, Scheme E shows a
speedup around 4.5, reducing the run time from
around 2 min to 26 sec. For the largest input
dataset tested, the measured speedup is around 7,
reducing execution time from around 24 min to 3
min 19 sec. The optimal number of MPI processes
is 10 for larger datasets in Scheme E.

Filtering, Recomputing and Final Tune-up
The original filtering functionality works well in
the Beowulf cluster environment. The original
swath filtering was being handled separately for
each input file. Thus the new distributed scheme of
processing input files by a group of slave nodes has
no effect on swath filtering. The same has been
found for the recomputing step and area based
filtering, which run without any changes to the
code because they are executed in the serial phase,
on the I/O node, only after the PFM file has already
been created.

5. SCHEME F

A tuned version of the new PFM library was used
in Scheme F. Scheme F was tested with four
different setups, involving two possible filtering
procedures: swath filtering, area filtering, both

Fig. 3. Achieved speedups of Scheme D-Threaded
for different loads

 Threaded Scheme D Speedup

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14

MPI processes

Sp
ee

du
p

7 files
12
24
48
74

Fig. 4. Achieved speedup of Scheme E for
different loads

Speedup of Scheme E

0

2

4

6

8

3 5 7 9 11 13 15

MPI processes

Sp
ee

du
p

7 f iles

12

24

48

74

Miller, et al. (2003). Proceedings, 7th Systemics, Cybernetics and Informatics Conference, Orlando, FL. July 27-30, 2003.

 5

Fig. 7. Scheme F using both filters

Speedup using Both Filters

0
1
2
3
4
5
6
7
8

3 5 7 9 11 13 15

MPI Processes

Sp
ee

du
p

7 files

12

24

48

74

swath and area filtering, and no filtering (called
“simple runs”). Each of these four setups has been
tested with the standard data test loads. Results
with no filtering are illustrated in Fig. 5.

Scheme F achieved the best speedup for the largest
available test dataset. The simple runs (no filtering)
exhibited a speedup of 10. Runs with swath
filtering enabled showed a top speedup of 8. Runs
with area filtering reached a speedup of 6.5. Runs
with both swath and area filtering enabled showed
a top speedup of 7. In the simple runs, swath
filtering and area-based filtering are turned off.
Fig. 6 illustrates achieved speedups for different
loads and filter processing. For the smallest dataset,
when swath filtering is turned on, worker nodes
filter the sounding data by swath before assembling
them and sending to the I/O node. Since swath
filtering puts additional processing onto worker

nodes, such code behavior is to be expected.
Worker nodes perform swath filtering on sounding
data read from the input files. When area filtering
is also turned on, the I/O node also performs area
filtering of sounding data. Since area filtering is
done exclusively by the I/O node after all sounding
data has been written to the PFM file, the area
filtering is performed in the serial phase of overall
processing.

6. THE ROLE OF HARD DRIVE
PERFORMANCE

This section presents arguments to support the
claim that the application Pfm_loader is I/O bound.
When Scheme D was developed, upgrading the
BIOS on each Beowulf cluster node resulted in
significant improvement in the throughput of
cluster IDE (ATA 100) disks. These changes
significantly affected the run time of parallel codes
as well as the original serial code. The changes for
the original serial code range from 5% to 11% (see
table 1). The resulting speedup is presented in fig.
7. In the case of algorithm speedups, the
comparisons are done with corresponding timings
for three MPI processes. The changes range from
29% to 57%, which at least triples that of
corresponding percentage changes for serial runs.

7. SUMMARY

 The optimal number of MPI processes for the
simple runs with large datasets is 9.6. When area
filtering is turned on, the I/O node filters sounding

Fig. 5. Achieved speedups of Scheme F with no
Filtering

Speedup without Filtering

0

2

4

6

8

10

12

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI processes

Sp
ee

du
p

7 files
12
24
48
74

Fig. 6. Scheme F with Area Filtering

Speedup with Area Filtering

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI Processes

Sp
ee

du
p

7 files
12
24
48
74

Miller, et al. (2003). Proceedings, 7th Systemics, Cybernetics and Informatics Conference, Orlando, FL. July 27-30, 2003.

 6

data by geographic area. Since area filtering is
done exclusively by the I/O node after all sounding
data has been already written to the PFM file, this
processing adds to the length of the serial phase in
the overall processing. The serial processing nature
of area filtering causes the greatest reduction in
performance. The results generated by testing two
of the four types of processing provide arguments
for increasing the size of the Beowulf cluster.
These two processing types are (a) processing with
swath filtering enabled, and (b) processing with
both swath and area filtering enabled. For the
largest test dataset, both processing methods
achieved their best speedups when running with the
maximal possible number of MPI processes.
However, the same data indicates the speedup
increase would be modest.

In all cases, the data strongly suggests that a
speedup greater than 10 could be achieved for
larger datasets. This property is a positive
characteristic of the current parallel code. It also
strongly suggests that the five test datasets have not
yet pushed the current code and cluster
configuration to its limits.

Number of Generic Sensor Format (GSF)
input files

7 12 24 48 74
Timings of serial code, before BIOS upgrade
125.1 203.5 439.3 946.0 1607.1
Timings of serial code, with BIOS upgrade
118.4 192.2 412.3 893.7 1433.2

Percentage change
5.33% 5.58% 6.13% 5.53% 10.82%

8. ACKNOWLEDGEMENTS

 This work was sponsored under Program Element
0603704N by the Oceanographer of the Navy via
SPAWAR PMW 155, Captain Bob Clark, Program
Manager. The Naval Research Laboratory (NRL)
wishes to acknowledge contributions the Naval
Oceanographic Office (NAVOCEANO) has made
to this research. In particular, NRL thanks Mr. Jim
Braud, Mr. Jan Depner, Mr. Dave Fabre, Mr. Roger

Meadows, Mr. Dave Richardson, Ms. Barbara
Reed, and Mr. Steve Nosalik for contributing their
ideas, test data, and original software sources.
Additionally, the authors wish to acknowledge
contributions made by the University of Southern
Mississippi Hydrographic Science Research Center
located at Stennis Space Center.

9. REFERENCES

[1] Depner, J. et al, Dealing with Increasing
Data Volumes and Decreasing Resources,
Oceans MTS/IEEE, 2002.
[2] Sarnowski, K., Miller, M.J., Layne, G.,
Project Report FY02, Hydrographic Research
Center, 2002.

TABLE 1
Timings of change in hard drive performance

